Tuesday, 10 February 2015

Ascension Earth 2012 -- February 10., 2015

Ascension Earth 2012


  • Hubble Telescope spots a gigantic 'smile' in deep space
  • Planck telescope puts new datestamp on first stars
  • White Dwarf Stars to Collide in Catastrophic Supernova
  • The Revelation of the Pyramids ~ Amazing new insights!
  • Problems with the theory of evolution ~ Unrefuted facts!
  • Cosmic Journeys ~ Is the Universe Infinite?
  • Green Bean Galaxies!
  • Actual images taken from the surface of Venus
  • What's Inside Jupiter?
  • 50 AMAZING Facts to Blow Your Mind! ~ #4
Posted: 09 Feb 2015 09:39 PM PST


A galaxy cluster "smiles" at the Hubble Telescope. Photo: NASA/ESA


The Hubble Telescope captured an image of an enormous galaxy cluster which appears to be smiling at its galactic neighbors. 

SpaceTelescope.org elaborates:
"In the case of this 'happy face', the two eyes are very bright galaxies and the misleading smile lines are actually arcs caused by an effect known as strong gravitational lensing.
Galaxy clusters are the most massive structures in the Universe and exert such a powerful gravitational pull that they warp the spacetime around them and act as cosmic lenses which can magnify, distort and bend the light behind them."
The smirking smile and the contours of the face are caused by that warping and bending of light around the cluster. The effect is also known as "Einstein ring."

Artist Judy Schmidt first brought the smile's attention to NASA and the European Space Agency after she sifted through Hubble's science archives and sent the image into "Hubble's Hidden Treasures" contest. NASA released the image Monday. 
Posted: 09 Feb 2015 09:33 PM PST

Polarisation of the sky
Planck has mapped the delicate polarisation of the CMB across the entire sky



Excerpt from bbc.com

Scientists working on Europe's Planck satellite say the first stars lit up the Universe later than previously thought.

The team has made the most precise map of the "oldest light" in the cosmos.

Earlier observations of this radiation had suggested the first generation of stars were bursting into life by about 420 million years after the Big Bang.

Planck's data indicates this great ignition was well established by some 560 million years after it all began.

"This difference of 140 million years might not seem that significant in the context of the 13.8-billion-year history of the cosmos, but proportionately it's actually a very big change in our understanding of how certain key events progressed at the earliest epochs," said Prof George Efstathiou, one of the leaders of the Planck Science Collaboration.

Subtle signal
 
The assessment is based on studies of the "afterglow" of the Big Bang, the ancient light called the Cosmic Microwave Background (CMB), which still washes over the Earth today.
Prof George Efstathiou: "We don't need more complicated explanations"

The European Space Agency's (Esa) Planck satellite mapped this "fossil" between 2009 and 2013.

It contains a wealth of information about early conditions in the Universe, and can even be used to work out its age, shape and do an inventory of its contents.

Scientists can also probe it for very subtle "distortions" that tell them about any interactions the CMB has had on its way to us.

Forging elements
 
One of these would have been imprinted when the infant cosmos underwent a major environmental change known as re-ionisation.
Prof Richard McMahon: "The two sides of the bridge now join"
It is when the cooling neutral hydrogen gas that dominated the Universe in the aftermath of the Big Bang was then re-energised by the ignition of the first stars.

These hot giants would have burnt brilliant but brief lives, producing the very first heavy elements. But they would also have "fried" the neutral gas around them - ripping electrons off the hydrogen protons.

And it is the passage of the CMB through this maze of electrons and protons that would have resulted in it picking up a subtle polarisation.
Impression
Impression: The first stars would have been unwieldy behemoths that burnt brief but brilliant lives


The Planck team has now analysed this polarisation in fine detail and determined it to have been generated at 560 million years after the Big Bang.

The American satellite WMAP, which operated in the 2000s, made the previous best estimate for the peak of re-ionisation at 420 million years.

The problem with that number was that it sat at odds with Hubble Space Telescope observations of the early Universe.

Hubble could not find stars and galaxies in sufficient numbers to deliver the scale of environmental change at the time when WMAP suggested it was occurring.

Planck's new timing "effectively solves the conflict," commented Prof Richard McMahon from Cambridge University, UK.

"We had two groups of astronomers who were basically working on different sides of the problem. The Planck people came at it from the Big Bang side, while those of us who work on galaxies came at it from the 'now side'.

"It's like a bridge being built over a river. The two sides do now join where previously we had a gap," he told BBC News.

That gap had prompted scientists to invoke complicated scenarios to initiate re-ionisation, including the possibility that there might have been an even earlier population of giant stars or energetic black holes. Such solutions are no longer needed.

No-one knows the exact timing of the very first individual stars. All Planck does is tell us when large numbers of these stars had gathered into galaxies of sufficient strength to alter the cosmic environment.

By definition, this puts the ignition of the "founding stars" well before 560 million years after the Big Bang. Quite how far back in time, though, is uncertain. Perhaps, it was as early as 200 million years. It will be the job of the next generation of observatories like Hubble's successor, the James Webb Space Telescope, to try to find the answer.
JWST
Being built now: The James Webb telescope will conduct a survey of the first galaxies and their stars
 
line
The history of the Universe
  
Graphic of the history of time
  • Planck's CMB studies indicate the Big Bang was 13.8bn years ago
  • The CMB itself can be thought of as the 'afterglow' of the Big Bang
  • It spreads across the cosmos some 380,000 years after the Big Bang
  • This is when the conditions cool to make neutral hydrogen atoms
  • The period before the first stars is often called the 'Dark Ages'
  • When the first stars ignite, they 'fry' the neutral gas around them
  • These giants also forge the first heavy elements in big explosions
  • 'First Light', or 'Cosmic Renaissance', is a key epoch in history
line

The new Planck result is contained in a raft of new papers just posted on the Esa website.

These papers accompany the latest data release from the satellite that can now be used by the wider scientific community, not just collaboration members.
Dr Andrew Jaffe: "The simplest models for inflation are ruled out"
Two years ago, the data dump largely concerned interpretations of the CMB based on its temperature profile. It is the CMB's polarisation features that take centre-stage this time.
It was hoped that Planck might find direct evidence in the CMB's polarisation for inflation - the super-rapid expansion of space thought to have occurred just fractions of a second after the Big Bang. This has not been possible. But all the Planck data - temperature and polarisation information - is consistent with that theory, and the precision measurements mean new, tighter constraints have been put on the likely scale of the inflation signal, which other experiments continue to chase.
What is clear from the Planck investigation is that the simplest models for how the super-rapid expansion might have worked are probably no longer tenable, suggesting some exotic physics will eventually be needed to explain it.
"We're now being pushed into a parameter space we didn't expect to be in," said collaboration scientist Dr Andrew Jaffe from Imperial College, UK. "That's OK. We like interesting physics; that's why we're physicists, so there's no problem with that. It's just we had this naïve expectation that the simplest answer would be right, and sometimes it just isn't." 
Posted: 09 Feb 2015 09:27 PM PST
Henize 2-428 nebula
Pictured: An artist's impression of the center of the Henize 2-428 planetary nebula, containing two white dwarf stars. (Photo : ESO/L. CALÇADA)


Excerpt from natureworldnews.com

Reported in the journal Nature, the European Southern Observatory's (ESO) Very Large Telescope (VLT) in Chile was originally studying how some stars produce strangely shaped, asymmetric nebula. They focused on Henize 2-428 and found something they did not expect - not just one star, but two.

"Further observations made with telescopes in the Canary Islands allowed us to determine the orbit of the two stars and deduce both the masses of the two stars and their separation. This was when the biggest surprise was revealed," co-author Romano Corradi, a researcher at the Instituto de Astrofísica de Canarias, said in a press release.

The next shocker was that the two stars were white dwarfs - tiny, extremely dense stars with a total mass about 1.8 times that of the Sun. The fact that there are two stars supports the theory that double central stars may explain the odd shapes of some of these nebulae.

They've also found that the stars orbit every 4 hours and due to the emission of gravitational waves, they are slowly spiraling into one another. Within the next 700 million years, these stars will merge and under the stress of their combined mass, explode in a giant supernova.

"Until now, the formation of supernovae Type Ia by the merging of two white dwarfs was purely theoretical," said co-author David Jones, an ESO Fellow at the time the data were obtained. "The pair of stars in Henize 2-428 is the real thing!"

"It's an extremely enigmatic system," added lead researcher Santander-García. "It will have important repercussions for the study of supernovae Type Ia, which are widely used to measure astronomical distances and were key to the discovery that the expansion of the Universe is accelerating due to dark energy."
Posted: 09 Feb 2015 09:25 PM PST



Posted: 09 Feb 2015 09:12 PM PST


Click to zoom

Posted: 09 Feb 2015 09:10 PM PST


Click to zoom
Posted: 09 Feb 2015 09:05 PM PST



Click to zoom
Posted: 09 Feb 2015 08:59 PM PST


The topography of Venus has only been seen by radar due to the planet's thickclouds. The best radar images of Venus are from the Soviet orbiters, Venera-15 and 16, and the American orbiter Magellan. 



Click to zoom
Posted: 09 Feb 2015 08:44 PM PST



Click to zoom
Posted: 09 Feb 2015 08:42 PM PST


Click to zoom

No comments:

Post a Comment


To Gregg,

Resultado de imagem para thank you roses images

For all these years of Friendship,
Guidance and Enlightment.

Ascension Earth 2012

Farewell from Ascension Earth!

I would like to extend a heartfelt thank you to each and every one of you for visiting Ascension Earth over the past few years and making this site, what I consider, such a wonderful and very surprising success since my first post way back in January of 2011. I never dreamed this site would receive just shy of 10 million page views since then, and I want to thank you all again for stopping in from time to time for a visit. I hope you have found some of the content interesting as well as educational, and I want everyone to know that I only shared content I believed to be factual at the time of publication, though I may have reached differing understandingsconcerning some of the subject matter as time has past. All of the content that has been shared here at Ascension Earth was shared with the goal of provoking contemplation and conversation, leading to a raising of consciousness, an ascension of consciousness. That's what ascension is to me.

I have made a decision to move on from here, but I will always remember and always cherish the friendships I have made along this twisting journey since launching this site, what feels like a lifetime ago now. I wish all of you the greatest success in each and every endeavor you shall undertake, and I hope each of you are graced with peace, love & light every step of the way as you continue your never ending journey through this incredibly breathtaking and ever mysterious universe we share together.

Greg

Morgan Kochel says:

Conversation with
A Man Who Went to Mars
by Morgan Kochel

…And there you have it! This was the end of our discussion about the Mars mission, but I have remained in touch with Chad. At this point, I hope to be able to convince him to do a video or TV interview, but of course, there will be more than a few obstacles to overcome, the main one being that he may currently be in some danger if he goes public.

Furthermore, there is always the barrier of peoples' understandable skepticism.

As I said in the beginning, I cannot verify this story for anyone, nor is my intent to convince anyone of its veracity. My goal is only to help him get his story heard, because if this story IS true, the people of this planet are being lied to on a grand scale, and perhaps this will eventually help the UFO Disclosure Movement. It's time for the lies to be uncovered, and time for the truth -- whatever that may be -- to be known once and for all.

a man

esoteric



SUBTITLES IN ENGLISH, ESPAÑOL, PORTUGUÊS

Click upon the circle after the small square for captions

INVOCATIOJN

Here we are once again ...



Please Sign Disclosure Petition VI - the Citizen Hearing

Anyone from any nation will be able to sign this petition:



We will win by our persistance!

JAIL THE BANKERS

February 7, 2013 - 7:00pm EST

February 7, 2013 - 7:00pm EST
T O R O N T O