Thursday, 26 February 2015

Ascension Earth 2012 -- February 26, 2015

Ascension Earth 2012


  • 'God Particle' analogue spotted outside a supercollider: Scientists find Higgs mode in a superconductor
  • Rare doomed planet with extreme seasons discovered
  • Is playing 'Space Invaders' a milestone in artificial intelligence?
  • Monster Black Hole Is the Largest and Brightest Ever Found
  • Why Does The Moon Look So Big Sometimes?
  • The Volcano Diaries ~ Objectivity #2
  • 7 Things you never knew existed ~ Volume #7
  • 50 AMAZING Facts to Blow Your Mind #17
  • CONTACT IN THE DESERT 2014 ~ Erich Von Daniken ~ UFO/Aliens Lecture
Posted: 25 Feb 2015 03:21 PM PST

The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle
The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle.


Excerpt from dailymail.co.uk
  • God Particle is believed to be responsible for all the mass in the universe
  • Particle was discovered in 2012 using a Cern's supercollider in Geneva
  • Superconductor experiment suggests the particle could be detected without the huge amounts of energy used at by the Large Hadron Collider
  • LHC is due to come back online next month after an upgrade that has given it a big boost in energy

Scientists have discovered a simulated version of the elusive 'God particle' using superconductors.

The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider. 
 
The results could help scientists better understand how this mysterious particle – also known as the Higgs boson – behaves in different conditions.

'Just as the Cern experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors,' said researcher Aviad Frydman from Bar-Ilan University.

Superconductors are a type of metal that, when cooled to low temperatures, allow electrons to pass through freely.

'The Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome,' Professor Frydman said.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)
The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)

 

WHAT IS THE GOD PARTICLE? 

The 'God Particle', also known as the Higgs boson, was a missing piece in the jigsaw for physicists in trying to understand how the universe works.

Scientists believe that a fraction of a second after the Big Bang that gave birth to the universe, an invisible energy field, called the Higgs field, formed.

This has been described as a kind of 'cosmic treacle' across the universe. 

As particles passed through it, they picked up mass, giving them size and shape and allowing them to form the atoms that make up you, everything around you and everything in the universe.

This was the theory proposed in 1964 by former grammar school boy Professor Higgs that has now been confirmed.

Without the Higgs field particles would simply whizz around space in the same way as light does.

A boson is a type of sub-atomic particle. Every energy field has a specific particle that governs its interaction with what's around it. 

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, they should have left a recognisable footprint. This footprint was found in 2012.

The main difficulty was that the superconducting material would decay into something known as particle-hole pairs.

Large amounts of energy – which are usually needed to excite the Higgs mode - tend to break apart the electron pairs that act as the material's charge.

Professor Frydman and his colleagues solved this problem by using ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) as something known as the 'superconductor-insulator critical point.'

This is a state in which recent theory predicted the decay of the Higgs would no longer occur.

In this way, they could still excite a Higgs mode even at relatively low energies.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt,' Professor Frydman added.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The different approach help solve one of the longstanding mysteries of fundamental physics.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space.

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, the also left a recognisable footprint.

Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson
Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson

According to Professor Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under different energy conditions.

'Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV,' Professor Frydman says.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The LHC is due to come back online in March after an upgrade that has given it a big boost in energy.

'With this new energy level, the (collider) will open new horizons for physics and for future discoveries,' CERN Director General Rolf Heuer said in a statement.
'I'm looking forward to seeing what nature has in store for us.'

Cern's collider is buried in a 27-km (17-mile) tunnel straddling the Franco-Swiss border at the foot of the Jura mountains.

The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy
The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy

Posted: 25 Feb 2015 03:13 PM PST

Kepler432b.jpg
Illustration provided by the University of Heidelberg of the orbit of Kepler-432b (inner, red) in comparison to the orbit of Mercury around the Sun (outer, orange). The red dot in the middle indicates the position of the star around which the planet is orbiting. The size of the star is shown to scale, while the size of the planet has been magnified ten times for illustration purposes. (Graphic: Dr. Sabine Reffert)


Excerpt from foxnews.com/science


A rare planet has been discovered, and it doesn’t seem like a stop anyone would want to make on an intergalactic cruise. Found by two research teams independently of each other, Kepler-432b is extreme in its mass, density, and weather. Roughly the same size of Jupiter, the planet is also doomed- in 200 million years it will be consumed by its sun. “Kepler-432b is definitively a rarity among exoplanets around giant stars: it is a close-in gas-giant planet orbiting a star whose radius is 'quickly' increasing,” Davide Gandolfi, from the Landessternwarte Koenigstuhl (part of the Centre for Astronomy of the University of Heidelberg), told FoxNews.com. “The orbit of the planet has a radius of about 45 million kilometers [28 million miles] (as a reference point, the Earth-Sun distance is about 150 million kilometers [93.2 Million miles]), while most of the planets known to orbit giant stars have wider orbits. The stellar radius is already 3 million kilometers [almost 2 million miles] (i.e., about 4 times the Sun radius) and in less than 200 million years it will be large enough for the star to swallow up its planet.”

Gandolfi, a member of one of the research groups who discovered the rare planet, explains that much like Jupiter, Kepler-432b is a gas-giant celestial body composed mostly of hydrogen and helium, and is most likely to have a dense core that accounts for 6 percent or less of the planet’s mass. “The planet has a mass six times that of Jupiter, but is about the same size!” he says. “This means that it is not one of the largest planets yet discovered: it is one of the most massive!” The planet’s orbit brings it extremely close to its host star on some occasions, and very far away at others, which creates extreme seasonal changes. In its year - which lasts 52 Earth days - winters can get a little chilly and summers a bit balmy, to say the least. According to Gandolfi, “The highly eccentric orbit brings Kepler-432b at ‘only’ 24 million kilometers [15 million miles] from its host star, before taking it to about three times as far away. This creates large temperature excursions over the course of the planet year, which is of only 52 Earth days. During the winter season, the temperature on Kepler-432b drops down to 500 degrees Celsius [932 degrees Fahrenheit], whereas in summer it can goes up to nearly 1000 degrees Celsius [1832 degrees Fahrenheit].”

Then again, if you are crazy enough to visit Kepler-432b, you’d better do it fast. As stated before, its host star is set to swallow the planet whole in 200 million years, making the celestial body a rare find. “The paucity of close-in planets around giant stars is likely to be due to the fact that these planets have been already swallowed up by their host stars,” Gandolfi says. “Kepler-432b has been discovered ‘just in time before dinner!” The host star, which is red and possesses 1.35 times the mass of our sun, has partly exhausted the nuclear fuel in its core, and is slowly expanding, eventually growing large enough to swallow Kepler-432b. According to Gandolfi, this is a natural progression for all stars. “Stars first generate nuclear energy in their core via the fusion of Hydrogen into Helium,” he explained. “At this stage, their radii basically do not change much. This is because the outward thermal pressure produced by the nuclear fusion in the core is balanced by the inward pressure of gravitational collapse from the overlying layers. In other words, the nuclear power is the star pillar! Our Sun is currently ‘burning’ hydrogen in its core (please note that I used quotes: ‘burning’ does not mean a chemical reaction- we are talking about nuclear fusion reaction). However, this equilibrium between the two pressures does not last forever. Helium is heavier than hydrogen and tends to sink. The stellar core of the Kepler-432b's host star is currently depleted of hydrogen and it is mainly made of inert helium. The star generates thermal energy in a shell around the core through the nuclear fusion of hydrogen into helium. As a result of this, the star expands and cools down. This is why we call it ‘red giant’- the reddish color comes from the fact that the external layers of the atmosphere of the star are cooling down because they expand.”

Both research teams (the other was from the Max Planck Institute for Astronomy in Heidelberg) used Calar Alto Observatory’s 7.2- foot telescope in Andalucia, Spain. The planet was also studied by Landessternwarte Koenigstuhl researchers using the 8.5-foot Nordic Optical Telescope on La Palma, which is located in Spain’s Canary Islands.
Posted: 25 Feb 2015 03:11 PM PST



Excerpt from latimes.com

Computers have beaten humans at chess and "Jeopardy!," and now they can master old Atari games such as "Space Invaders" or "Breakout" without knowing anything about their rules or strategies.

Playing Atari 2600 games from the 1980s may seem a bit "Back to the Future," but researchers with Google's DeepMind project say they have taken a small but crucial step toward a general learning machine that can mimic the way human brains learn from new experience.

Unlike the Watson and Deep Blue computers that beat "Jeopardy!" and chess champions with intensive programming specific to those games, the Deep-Q Network built its winning strategies from keystrokes up, through trial and error and constant reprocessing of feedback to find winning strategies.
Image result for space invaders

“The ultimate goal is to build smart, general-purpose [learning] machines. We’re many decades off from doing that," said artificial intelligence researcher Demis Hassabis, coauthor of the study published online Wednesday in the journal Nature. "But I do think this is the first significant rung of the ladder that we’re on."
The Deep-Q Network computer, developed by the London-based Google DeepMind, played 49 old-school Atari games, scoring "at or better than human level," on 29 of them, according to the study.

The algorithm approach, based loosely on the architecture of human neural networks, could eventually be applied to any complex and multidimensional task requiring a series of decisions, according to the researchers.

The algorithms employed in this type of machine learning depart strongly from approaches that rely on a computer's ability to weigh stunning amounts of inputs and outcomes and choose programmed models to "explain" the data. Those approaches, known as supervised learning, required artful tailoring of algorithms around specific problems, such as a chess game.

The computer instead relies on random exploration of keystrokes bolstered by human-like reinforcement learning, where a reward essentially takes the place of such supervision.

“In supervised learning, there’s a teacher that says what the right answer was," said study coauthor David Silver. "In reinforcement learning, there is no teacher. No one says what the right action was, and the system needs to discover by trial and error what the correct action or sequence of actions was that led to the best possible desired outcome.”

The computer "learned" over the course of several weeks of training, in hundreds of trials, based only on the video pixels of the game -- the equivalent of a human looking at screens and manipulating a cursor without reading any instructions, according to the study.

Over the course of that training, the computer built up progressively more abstract representations of the data in ways similar to human neural networks, according to the study.

There was nothing about the learning algorithms, however, that was specific to Atari, or to video games for that matter, the researchers said.
The computer eventually figured out such insider gaming strategies as carving a tunnel through the bricks in "Breakout" to reach the back of the wall. And it found a few tricks that were unknown to the programmers, such as keeping a submarine hovering just below the surface of the ocean in "Seaquest."

The computer's limits, however, became evident in the games at which it failed, sometimes spectacularly. It was miserable at "Montezuma's Revenge," and performed nearly as poorly at "Ms. Pac-Man." That's because those games also require more sophisticated exploration, planning and complex route-finding, said coauthor Volodymyr Mnih.

And though the computer may be able to match the video-gaming proficiency of a 1980s teenager, its overall "intelligence" hardly reaches that of a pre-verbal toddler. It cannot build conceptual or abstract knowledge, doesn't find novel solutions and can get stuck trying to exploit its accumulated knowledge rather than abandoning it and resort to random exploration, as humans do.

“It’s mastering and understanding the construction of these games, but we wouldn’t say yet that it’s building conceptual knowledge, or abstract knowledge," said Hassabis.

The researchers chose the Atari 2600 platform in part because it offered an engineering sweet spot -- not too easy and not too hard. They plan to move into the 1990s, toward 3-D games involving complex environments, such as the "Grand Theft Auto" franchise. That milestone could come within five years, said Hassabis.

“With a few tweaks, it should be able to drive a real car,” Hassabis said.

DeepMind was formed in 2010 by Hassabis, Shane Legg and Mustafa Suleyman, and received funding from Tesla Motors' Elon Musk and Facebook investor Peter Thiel, among others. It was purchased by Google last year, for a reported $650 million.

Hassabis, a chess prodigy and game designer, met Legg, an algorithm specialist, while studying at the Gatsby Computational Neuroscience Unit at University College, London. Suleyman, an entrepreneur who dropped out of Oxford University, is a partner in Reos, a conflict-resolution consulting group.
Posted: 25 Feb 2015 03:05 PM PST

Largest and Brightest Black Hole
An artist's illustration of a monster supermassive black hole at the heart of a quasar in the distant universe. Scientists say the newfound black hole SDSS J010013.02+280225.8 is the largest and brightest ever found.

Excerpt from space.com

Astronomers have discovered the largest and most luminous black hole ever seen — an ancient monster with a mass about 12 billion times that of the sun — that dates back to when the universe was less than 1 billion years old.

It remains a mystery how black holes could have grown so huge in such a relatively brief time after the dawn of the universe, researchers say.

Supermassive black holes are thought to lurk in the hearts of most, if not all, large galaxies. The largest black holes found so far in the nearby universe have masses more than 10 billion times that of the sun. In comparison, the black hole at the center of the Milky Way is thought to have a mass only 4 million to 5 million times that of the sun.

Although not even light can escape the powerful gravitational pulls of black holes — hence, their name — black holes are often bright. That's because they're surrounded by features known as accretion disks, which are made up of gas and dust that heat up and give off light as it swirl into the black holes. Astronomers suspect that quasars, the brightest objects in the universe, contain supermassive black holes that release extraordinarily large amounts of light as they rip apart stars.
So far, astronomers have discovered 40 quasars — each with a black hole about 1 billion times the mass of the sun — dating back to when the universe was less than 1 billion years old. Now, scientists report the discovery of a supermassive black hole 12 billion times the mass of the sun about 12.8 billion light-years from Earth that dates back to when the universe was only about 875 million years old.

This black hole — technically known as SDSS J010013.02+280225.8, or J0100+2802 for short — is not only the most massive quasar ever seen in the early universe but also the most luminous. It is about 429 trillion times brighter than the sun and seven times brighter than the most distant quasar known.

The light from very distant quasars can take billions of years to reach Earth. As such, astronomers can see quasars as they were when the universe was young.

This black hole dates back to a little more than 6 percent of the universe's current age of 13.8 billion years.

"This is quite surprising because it presents serious challenges to theories of black hole growth in the early universe," said lead study author Xue-Bing Wu, an astrophysicist at Peking University in Beijing.

Accretion discs limit the speed of modern black holes' growth. First, as gas and dust in the disks get close to black holes, traffic jams slow down any other material that's falling into them. Second, as matter collides in these traffic jams, it heats up, emitting radiation that drives gas and dust away from the black holes.
Newfound Quasar SDSS J0100+2802
The newfound quasar SDSS J0100+2802 has the most massive black hole and the highest luminosity among all known distant quasars, as shown in this comparison chart of the black hole's mass and brightness.


Scientists still do not have a satisfactory theory to explain how these supermassive objects formed in the early universe, Wu said.

"It requires either very special ways to quickly grow the black hole or a huge seed black hole," Wu told Space.com. For instance, a recent study suggested that because the early universe was much smaller than it is today, gas was often denser, obscuring a substantial amount of the radiation given off by accretion disks and thus helping matter fall into black holes.

The researchers noted that the light from this black hole could help provide clues about the dark corners of the distant cosmos. As the quasar's light shines toward Earth, it passes through intergalactic gas that colors the light. By deducing how this intergalactic gas influenced the spectrum of light from the quasar, scientists can deduce which elements make up this gas. This knowledge, in turn, can provideinsight into the star-formation processes that were at work shortly after the Big Bang that produced these elements.

"This quasar is the most luminous one in the early universe, which, like a lighthouse, will provide us chances to use it as a unique tool to study the cosmic structure of the dark, distant universe," Wu said.
The scientists detailed their findings in the Feb. 26 issue of the journal Nature.
Posted: 25 Feb 2015 02:59 PM PST


Click to zoom
Posted: 25 Feb 2015 02:54 PM PST

Click to zoom
Posted: 25 Feb 2015 02:52 PM PST


Click to zoom
Posted: 25 Feb 2015 02:49 PM PST



Click to zoom
Posted: 25 Feb 2015 02:45 PM PST


Click to zoom

No comments:

Post a Comment


To Gregg,

Resultado de imagem para thank you roses images

For all these years of Friendship,
Guidance and Enlightment.

Ascension Earth 2012

Farewell from Ascension Earth!

I would like to extend a heartfelt thank you to each and every one of you for visiting Ascension Earth over the past few years and making this site, what I consider, such a wonderful and very surprising success since my first post way back in January of 2011. I never dreamed this site would receive just shy of 10 million page views since then, and I want to thank you all again for stopping in from time to time for a visit. I hope you have found some of the content interesting as well as educational, and I want everyone to know that I only shared content I believed to be factual at the time of publication, though I may have reached differing understandingsconcerning some of the subject matter as time has past. All of the content that has been shared here at Ascension Earth was shared with the goal of provoking contemplation and conversation, leading to a raising of consciousness, an ascension of consciousness. That's what ascension is to me.

I have made a decision to move on from here, but I will always remember and always cherish the friendships I have made along this twisting journey since launching this site, what feels like a lifetime ago now. I wish all of you the greatest success in each and every endeavor you shall undertake, and I hope each of you are graced with peace, love & light every step of the way as you continue your never ending journey through this incredibly breathtaking and ever mysterious universe we share together.

Greg

Morgan Kochel says:

Conversation with
A Man Who Went to Mars
by Morgan Kochel

…And there you have it! This was the end of our discussion about the Mars mission, but I have remained in touch with Chad. At this point, I hope to be able to convince him to do a video or TV interview, but of course, there will be more than a few obstacles to overcome, the main one being that he may currently be in some danger if he goes public.

Furthermore, there is always the barrier of peoples' understandable skepticism.

As I said in the beginning, I cannot verify this story for anyone, nor is my intent to convince anyone of its veracity. My goal is only to help him get his story heard, because if this story IS true, the people of this planet are being lied to on a grand scale, and perhaps this will eventually help the UFO Disclosure Movement. It's time for the lies to be uncovered, and time for the truth -- whatever that may be -- to be known once and for all.

a man

esoteric



SUBTITLES IN ENGLISH, ESPAÑOL, PORTUGUÊS

Click upon the circle after the small square for captions

INVOCATIOJN

Here we are once again ...



Please Sign Disclosure Petition VI - the Citizen Hearing

Anyone from any nation will be able to sign this petition:



We will win by our persistance!

JAIL THE BANKERS

February 7, 2013 - 7:00pm EST

February 7, 2013 - 7:00pm EST
T O R O N T O