Thursday, 30 April 2015

Ascension Earth 2012 -- 30:04:2015

Ascension Earth 2012


  • Do We Live In A Hologram? It's More Likely Than You Might Think
  • IBM advances bring quantum computing closer to reality
  • This revolutionary discovery could help scientists see black holes for the first time
  • Kathryn Schulz: Don't regret regret
  • The Suicide Experiment
  • The Evidence For Evolution Made Easy ~ HD
  • The Prohibition Era & the Ganja Godfather on Coast To Coast Radio
  • Can You Genetically Enhance Yourself?
  • Could We Be The Last of Us?
  • Why does the placebo effect work?
Posted: 29 Apr 2015 04:58 PM PDT


Excerpt from forbes.com
By Eric Mack

Everything in our universe might be a lot flatter than it seems, at least, if you do the math.

If you’ve got a credit card in your wallet that has one of those little 3D holograms on it — a two-dimensional  image that uses some tricks of light to appear three-dimensional — you can get a sense of how new research out of Vienna suggests that we might be able to describe our universe.

In other words, the mind-melting notion that sometimes floats around in theoretical physics and science fiction circles that the universe might actually be a hologram continues to be worth further investigation.

It’s an idea that’s been around at least since 1994 when Leonard Susskind published a paper describing how the merging of the quantum and relativistic descriptions of the universe yielded a three-dimensional world that could actually be “an image of data that can be stored on a two dimensional projection much like a holographic image.”



(credit: Vienna University of Technology)


Testing this idea in a space similar to what we experience in the universe is difficult, but an international team led by Daniel Grumiller at the Vienna University of Technology has spent the last few years trying to calculate whether or not the “holographic principle,” as it’s called, could hold in our universe.

This week they published their findings in the journal Physical Review Lettersthat the idea of a holographic universe is feasible using both the quantum and relativistic theories.

“This calculation affirms our assumption that the holographic principle can also be realized in flat spaces. It is evidence for the validity of this correspondence in our universe”, says team member Max Riegler, also from the Vienna University of Technology.


“That we are now able to use this as a tool to test the validity of the holographic principle, and that this test works out, is quite remarkable,” adds Grumiller in a release.

The team explains that their findings are not yet proof we are living in a hologram. However, an experiment currently running at the Fermilab could help shed a little light on the matter.

The lab’s Holometer is currently examining the characteristics of space itself in an attempt to observe whether or not the space-time of our universe is steady, or if it “jitters” a bit. This “holographic noise” could represent further evidence that our three-dimensional world is a little less “deep” than it seems.
Posted: 29 Apr 2015 04:51 PM PDT

ibm research jerry chow
  Research scientist Jerry Chow performs a quantum computing experiment at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y. Jon Simon/IBM


Excerpt from computerworld.com
By Sharon Gaudin

IBM scientists say they have made two critical advances in an industrywide effort to build a practical quantum computer, shaving years off the time expected to have a working system.

"This is critical," said Jay Gambetta, IBM's manager of theory of quantum computing. "The field has got a lot more competitive. You could say the [quantum computing] race is just starting to begin… This is a small step on the journey but it's an important one."

Gambetta told Computerworld that IBM's scientists have created a square quantum bit circuit design, which could be scaled to much larger dimensions. This new two-dimensional design also helped the researchers figure out a way to detect and measure errors.
Quantum computing is a fragile process and can be easily thrown off by vibrations, light and temperature variations. Computer scientists doubt they'll ever get the error rate down to that in a classical computer.


Because of the complexity and sensitivity of quantum computing, scientists need to be able to detect errors, figure out where and why they're happening and prevent them from recurring.

IBM says its advancement takes the first step in that process.
"It tells us what errors are happening," Gambetta said. "As you make the square [circuit design] bigger, you'll get more information so you can see where the error was and you can correct for it. We're showing now that we have the ability to detect, and we're working toward the next step, which would allow you to see where and why the problem is happening so you can stop it from happening."

Quantum computing is widely thought to be the next great step in the field of computing, potentially surpassing classical supercomputers in large-scale, complex calculations.

Quantum computing would be used to cull big data, searching for patterns. It's hoped that these computers will take on questions that would lead to finding cures for cancer or discovering distant planets – jobs that might take today's supercomputers hundreds of years to calculate.

IBM's announcement is significant in the worlds of both computing and physics, where quantum theory first found a foothold.

Quantum computing, still a rather mysterious technology, combines both computing and quantum mechanics, which is one of the most complex, and baffling, areas of physics. This branch of physics evolved out of an effort to explain things that traditional physics is unable to.


With quantum mechanics, something can be in two states at the same time. It can be simultaneously positive and negative, which isn't possible in the world as we commonly know it.

For instance, each bit, also known as a qubit, in a quantum machine can be a one and a zero at the same time. When a qubit is built, it can't be predicted whether it will be a one or a zero. A qubit has the possibility of being positive in one calculation and negative in another. Each qubit changes based on its interaction with other qubits.

Because of all of these possibilities, quantum computers don't work like classical computers, which are linear in their calculations. A classical computer performs one step and then another. A quantum machine can calculate all of the possibilities at one time, dramatically speeding up the calculation.

However, that speed will be irrelevant if users can't be sure that the calculations are accurate.

That's where IBM's advances come into play.

"This is absolutely key," said Jim Tully, an analyst with Gartner. "You do the computation but then you need to read the results and know they're accurate. If you can't do that, it's kind of meaningless. Without being able to detect errors, they have no way of knowing if the calculations have any validity."

If scientists can first detect and then correct these errors, it's a major step in the right direction to building a working quantum computing system capable of doing enormous calculations.

"Quantum computing is a hard concept for most to understand, but it holds great promise," said Dan Olds, an analyst with The Gabriel Consulting Group. "If we can tame it, it can compute certain problems orders of magnitude more quickly than existing computers. The more organizations that are working on unlocking the potential of quantum computing, the better. It means that we'll see something real that much sooner."

However, there's still debate over whether a quantum computer already exists.

A year ago, D-Wave Systems Inc. announced that it had built a quantum system, and that NASA, Google and Lockheed Martin had been testing them.

Many in the computer and physics communities doubt that D-Wave has built a real quantum computer. Vern Brownell, CEO of the company, avows that they have.

"I think that quantum computing shows promise, but it's going to be quite a while before we see systems for sale," said Olds.
IBM's Gambetta declined to speculate on whether D-Wave has built a quantum computing but said the industry is still years away from building a viable quantum system.

"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today," said Arvind Krishna, senior vice president and director of IBM Research, in a statement.

IBM's research was published in Wednesday's issue of the journal Nature Communications.

quantum computing infographics ibm
Posted: 29 Apr 2015 04:44 PM PDT

supermassive black hole
Artist's concept of the black hole.




Excerpt from finance.yahoo.com

Of all the bizarre quirks of nature, supermassive black holes are some of the most mysterious because they're completely invisible.

But that could soon change.

Black holes are deep wells in the fabric of space-time that eternally trap anything that dares too close, and supermassive black holes have the deepest wells of all. These hollows are generated by extremely dense objects thousands to billions of times more massive than our sun.

Not even light can escape black holes, which means they're invisible to any of the instruments astrophysicists currently use. Although they don't emit light, black holes will, under the right conditions, emit large amounts of gravitational waves — ripples in spacetime that propagate through the universe like ripples across a pond's surface.

And although no one has ever detected a gravitational wave, there are a handful of instruments around the world waiting to catch one.

Game-changing gravitational waves





.
black hole
This illustration shows two spiral galaxies - each with supermassive black holes at their center - as they are about to collide. 

Albert Einstein first predicted the existence of gravitational waves in 1916. According to his theory of general relativity, black holes will emit these waves when they accelerate to high speeds, which happens when two black holes encounter one another in the universe.  

As two galaxies collide, for example, the supermassive black holes at their centers will also collide. But first, they enter into a deadly cosmic dance where the smaller black hole spirals into the larger black hole, moving increasingly faster as it inches toward it's inevitable doom. As it accelerates, it emits gravitational waves.

Astrophysicists are out to observe these waves generated by two merging black holes with instruments like the Laser Interferometer Gravitational-Wave Observatory.

"The detection of gravitational waves would be a game changer for astronomers in the field," Clifford Will, a distinguished profess of physics at the University of Florida who studied under famed astrophysicist Kip Thorne told Business Insider. "We would be able to test aspects of general relativity that have not been tested."

Because these waves have never been detected, astrophysicists are still trying to figure out how to find them. To do this, they build computer simulations to predict what kinds of gravitational waves a black hole merger will produce. 

Learn by listening


In the simulation below, made by Steve Drasco at California Polytechnic State University (also known as Cal Poly), a black hole gets consumed by a supermassive black hole about 30,000 times as heavy.

You'll want to turn up the volume.


What you're seeing and hearing are two different things.

The black lines you're seeing are the orbits of the tiny black hole traced out as it falls into the supermassive black hole. What you're hearing are gravitational waves.

"The motion makes gravitational waves, and you are hearing the waves," Drasco wrote in a blog post describing his work.

Of course, there is no real sound in space, so if you somehow managed to encounter this rare cataclysmic event, you would not likely hear anything. However, what Drasco has done will help astrophysicists track down these illusive waves.

Just a little fine tuning 


Gravitational waves are similar to radio waves in that both have specific frequencies. On the radio, for example, the number corresponding to the station you're listening to represents the frequency at which that station transmits.




.
gwaves
3D visualization of gravitational waves produced by 2 orbiting black holes. Right now, astrophysicists only have an idea of what frequencies two merging black holes transmit because they’re rare and hard to find. In fact, the first ever detection of an event of this kind was only announced this month. 

Therefore, astrophysicists are basically toying with their instruments like you sometimes toy with your radio to find the right station, except they don’t know what station will give them the signal they’re looking for.

What Drasco has done in his simulation is estimate the frequency at which an event like this would produce and then see how that frequency changes, so astrophysicists have a better idea of how to fine tune their instruments to search for these waves.

Detecting gravitational waves would revolutionize the field of astronomy because it would give observers an entirely new way to see the universe. Armed with this new tool, they will be able to test general relativity in ways never before made possible.
Posted: 29 Apr 2015 02:04 PM PDT





Posted: 29 Apr 2015 04:59 PM PDT





Posted: 29 Apr 2015 04:59 PM PDT





Posted: 29 Apr 2015 04:59 PM PDT






Posted: 29 Apr 2015 04:59 PM PDT





Posted: 29 Apr 2015 04:59 PM PDT






Posted: 29 Apr 2015 04:59 PM PDT





No comments:

Post a Comment


To Gregg,

Resultado de imagem para thank you roses images

For all these years of Friendship,
Guidance and Enlightment.

Ascension Earth 2012

Farewell from Ascension Earth!

I would like to extend a heartfelt thank you to each and every one of you for visiting Ascension Earth over the past few years and making this site, what I consider, such a wonderful and very surprising success since my first post way back in January of 2011. I never dreamed this site would receive just shy of 10 million page views since then, and I want to thank you all again for stopping in from time to time for a visit. I hope you have found some of the content interesting as well as educational, and I want everyone to know that I only shared content I believed to be factual at the time of publication, though I may have reached differing understandingsconcerning some of the subject matter as time has past. All of the content that has been shared here at Ascension Earth was shared with the goal of provoking contemplation and conversation, leading to a raising of consciousness, an ascension of consciousness. That's what ascension is to me.

I have made a decision to move on from here, but I will always remember and always cherish the friendships I have made along this twisting journey since launching this site, what feels like a lifetime ago now. I wish all of you the greatest success in each and every endeavor you shall undertake, and I hope each of you are graced with peace, love & light every step of the way as you continue your never ending journey through this incredibly breathtaking and ever mysterious universe we share together.

Greg

Morgan Kochel says:

Conversation with
A Man Who Went to Mars
by Morgan Kochel

…And there you have it! This was the end of our discussion about the Mars mission, but I have remained in touch with Chad. At this point, I hope to be able to convince him to do a video or TV interview, but of course, there will be more than a few obstacles to overcome, the main one being that he may currently be in some danger if he goes public.

Furthermore, there is always the barrier of peoples' understandable skepticism.

As I said in the beginning, I cannot verify this story for anyone, nor is my intent to convince anyone of its veracity. My goal is only to help him get his story heard, because if this story IS true, the people of this planet are being lied to on a grand scale, and perhaps this will eventually help the UFO Disclosure Movement. It's time for the lies to be uncovered, and time for the truth -- whatever that may be -- to be known once and for all.

a man

esoteric



SUBTITLES IN ENGLISH, ESPAÑOL, PORTUGUÊS

Click upon the circle after the small square for captions

INVOCATIOJN

Here we are once again ...



Please Sign Disclosure Petition VI - the Citizen Hearing

Anyone from any nation will be able to sign this petition:



We will win by our persistance!

JAIL THE BANKERS

February 7, 2013 - 7:00pm EST

February 7, 2013 - 7:00pm EST
T O R O N T O